Calnuc binds to Alzheimer's beta-amyloid precursor protein and affects its biogenesis.

نویسندگان

  • Ping Lin
  • Feng Li
  • Yun-Wu Zhang
  • Haining Huang
  • Gary Tong
  • Marilyn Gist Farquhar
  • Huaxi Xu
چکیده

Calnuc, a Golgi calcium binding protein, plays a key role in the constitution of calcium storage. Abnormal calcium homeostasis has been linked to Alzheimer's disease (AD). Excessive production and/or accumulation of beta-amyloid (Abeta) peptides that are proteolytically derived from the beta-amyloid precursor protein (APP) have been linked to the pathogenesis of AD. APP has also been indicated to play multiple physiological functions. In this study, we demonstrate that calnuc interacts with APP through direct binding to the carboxyl-terminal region of APP, possibly in a calcium-sensitive manner. Immunofluorescence study revealed that the two proteins co-localize in the Golgi in both cultured cells and mouse brains. Over-expression of calnuc in neuroblastoma cells significantly reduces the level of endogenous APP. Conversely, down-regulation of calnuc by siRNA increases cellular levels of APP. Additionally, we show that over-expression of calnuc down-regulates the APP mRNA level and inhibits APP biosynthesis, which in turn results in a parallel reduction of APP proteolytic metabolites, sAPP, CTFs and Abeta. Furthermore, we found that the level of calnuc was significantly decreased in the brain of AD patients as compared with that of age-matched non-AD controls. Our results suggest a novel function of calnuc in modulating the levels of APP and its proteolytic metabolites, which may further affect the patho/physiological functions of APP including AD pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

Structure and Synaptic Function of Metal Binding to the Amyloid Precursor Protein and its Proteolytic Fragments

Alzheimer's disease (AD) is ultimately linked to the amyloid precursor protein (APP). However, current research reveals an important synaptic function of APP and APP-like proteins (APLP1 and 2). In this context various neurotrophic and neuroprotective functions have been reported for the APP proteolytic fragments sAPPα, sAPPβ and the monomeric amyloid-beta peptide (Aβ). APP is a metalloprotein ...

متن کامل

P 102: The Study of Some Factors Which Effect on Beta-Amyloid Signaling in Neuroinflammation

Neurological inflammatory diseases are developing rapidly. Different factors involved in the pathogenesis of these diseases. In this article, we discuss some of the mechanisms are dealt with. An aberrant procedure of beta-amyloid precursor protein (BAPP) to form neurotoxic beta-amyloid peptides and an accumulated insoluble polymer of beta –amyloid (BA) that forms the senile plaque. The ab...

متن کامل

A copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer's disease.

The amyloidogenic processing pathway of the APP (amyloid precursor protein) generates Abeta (amyloid beta-peptide), the major constituent in Alzheimer's disease senile plaques. This processing is catalysed by two unusual membrane-localized aspartic proteinases, beta-secretase [BACE1 (beta-site APP-cleaving enzyme 1)] and the gamma-secretase complex. There is a clear link between APP processing ...

متن کامل

RNA interference silencing of DRAL affects processing of amyloid precursor protein.

In a previous study, we reported that Alzheimer's disease-associated presenilin-2 interacts with a LIM-domain protein, namely, DRAL/FHL2/SLIM3. In this study, we investigated whether DRAL modifies the metabolism of the amyloid precursor protein (APP). We used small interfering RNA (siRNA) to knockdown DRAL in COS7 and HEK293 cells that stably overexpress APP695. We found that the knockdown was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 100 6  شماره 

صفحات  -

تاریخ انتشار 2007